

SW User Guide

1VV0301293, Rev. 04 - 2016-05-26

BlueEva+B20/V4

User Guide

Release r02

Table of contents

1	I	Introd	uction	.5						
2	I	Packa	ackage Contents5							
3	I	Deplo	yment	.6						
	3.1	1 Sta	artup	.6						
	3.2	2 Ins	tallation of BlueEva+B20 USB Driver	.7						
	3.3	3 Co	nfiguration	.7						
		3.3.1 the Se	Establishing a Bluetooth Connection between two BlueEva+B20 using erial Port Profile (SPP)							
		3.3.2 BlueE	Automatically Establishing a Bluetooth Connection between two va+B20 Using "Auto Connect"	10						
4	I	Hardv	vare	11						
	4.′	1 Blu	ietooth Modules	11						
	4.2	2 Po	wer Supply	11						
	4.3	3 Re	set	12						
	4.4	4 US	B Interface	12						
	4.5	5 Se	rial Interface	12						
	4.6	6 SF	I Interface	12						
	4.7	7 LE	Ds	13						
	4.8	B Co	nnectors/Jumpers	14						
	4	4.8.1	Jumper J1 – Signal Routing	14						
	4	4.8.2	Jumper J2 – GPIO Input	15						
	4	4.8.3	Jumper J3 – Power Consumption	15						
	4	4.8.4	Jumper J4 – Power Source	16						
	4	4.8.5	Jumper J5 – Ground Connection	16						
	4	4.8.6	Jumper J6 – Module Serial Interface Activation	16						
	4	4.8.7	Jumper J7 – Reset Button	16						
	4	4.8.8	Connector X1	17						
	4	4.8.9	Debug Interface	18						
	4	4.8.10) Module Interface	18						
	4.9	9 De	fault Configuration	19						

5	Software	20
6	Restrictions	20
7	History	20

1 Introduction

This documentation describes the usage of the Bluetooth evaluation board BlueEva+B20 V4.

2 Package Contents

The BlueEva+B20 package contains the following components:

- 2 BlueEva+B20 boards
- 2 power supply, 5 VDC
- 2 serial cables, RS232
- 2 USB cables
- 1 SPI cable
- 10 additional jumpers
- BlueEva+B20 CD-ROM

BlueEva+B20/V4 User Guide

3 Deployment

3.1 Startup

To deploy the BlueEva+B20, connect it as follows.



Figure 1: BlueEva+B20 with components and accessories as delivered

You may connect the RS232 connector to the COM port of a PC. This lets you use a terminal emulation program (such as TeraTerm included on the BlueEva+B20 CD) to perform the configuration or to control the Bluetooth connection.

The USB connection is used for UART communication to a PC over a virtual comport. This lets you use a terminal emulation program to perform the configuration or to control the Bluetooth connection.

The USB connection may be used as an alternative to the 5 VDC mains adapter.

3.2 Installation of BlueEva+B20 USB Driver

Connect the BlueEva+B20 to a PC USB port and install the FTDI VCP USB to UART driver (included on the BlueEva+B20 CD or download at

http://www.ftdichip.com/Drivers/VCP.htm).

3.3 Configuration

If the BlueEva+B20 is correctly connected to the COM port of the PC, a terminal emulation program can be used to read and modify the configuration settings.

For a more detailed description of the AT commands used for this purpose, please consult our *BlueMod*+*B*2*x* AT Command Reference.

As shipped by the factory, the BlueEva+B20 works at 115,200 bps, using the 8N1 data format (8 data bits, no parity, 1 stop bit). Please configure your terminal emulation program accordingly.

Port: Baud rate:	COM1 -	ОК
Data:	8 bit 💌	Cance
Parity:	none	
Stop:	1 bit 💌	Help
Flow control:	hardware 💌	
Transmit dela	,	

Figure 2: COM port configuration with TeraTerm

Once you have successfully configured the emulation program, issuing the "AT" command without parameters should prompt the BlueEva+B20 to return OK.

Now you can readout information about the type of the connected device using the "ATI" command.

In the next step, you should issue the "ATI99" command to determine the firmware version installed and check to see whether that is the most recent version.

Finally, you should use the "ATI4" command to determine the Bluetooth address of the BlueEva+B20 and note it down. The Bluetooth address is unique, letting you identify the correct device for each Bluetooth address.

🖳 CO	M5:1	15200	baud - To	era Term	VT	
			Control	Window	Help	
at OK ati BlueMod	I+B20	X:4a				
OK at 199 BCO4-OO V2.001	100000 Nov 1	0 a 001 7 2010 :	000000 15:04:34			
0K ati4 0080250	170080	P				
ОК						

Figure 3: Reading some BlueEva+B20 settings with TeraTerm

3.3.1 Establishing a Bluetooth Connection between two BlueEva+B20 using the Serial Port Profile (SPP)

First of all, determine the Bluetooth addresses of the two BlueEva+B20. To do so, connect each of the BlueEva+B20 to the COM port of the PC and readout the Bluetooth address using the "ATI4" command as described in Chapter 3.3, *Configuration*.

You can either use a single PC with 2 COM ports or two separate PCs with one COM ports each.

Now you can establish a connection from one BlueEva+B20 to another by issuing the "ATD<Bluetooth_Address>" command.

💆 C	OM5:1	15200	baud - Te	era Term	VT	
			Control	Window	<u>H</u> elp	
CONNE	Horld					

Figure 4: Establishing a Bluetooth connection between two BlueEva+B20

If the connection was established successfully, the originating BlueEva+B20 will issue the message CONNECT. You can now send data transparently between the two BlueEva+B20.

To terminate the Bluetooth connection, click "Disconnect" in the terminal emulation program.

3.3.2 Automatically Establishing a Bluetooth Connection between two BlueEva+B20 Using "Auto Connect"

It is possible to configure the BlueEva+B20 to automatically establish a Bluetooth connection to a second (remote) device without having to take control manually.

This requires that you store the Bluetooth address of the remote device on the BlueEva+B20.

To do so, use the "S330" and "S404" parameter. For more detailed information about this parameter, please consult our *BlueMod+B2x AT Command Reference*.

💆 C	OM5:1	15200	baud - Te	era Term	¥Τ	
			Control	Window	Help	
at OK ats33 OK ats40 OK	0=0080; 4=1	2512d&37				*
CONNE hello NO CA	uorld					T T

Figure 5: Establishing a Bluetooth connection with Auto Connect

Next you must turn off the BlueEva+B20.

Once the BlueEva+B20 has been turned back on, it will attempt to automatically establish a Bluetooth connection to the remote device, which in our example is the second BlueEva+B20.

If the connection was established successfully, the originating BlueEva+B20 will issue the CONNECT message. You can now send data transparently between the two BlueEva+B20.

To terminate the Auto Connect mode, you will have to turn off the remote device and wait for the NO CARRIER message on the originating BlueEva+B20.

Now you can load the factory defaults of the module using the AT&F command.

Connector X1 LEDs Jumper J1 Jumper J5 Debug Interface Module Interface USB Interface Jumper J3 12.0 2.9 32.4 Jumper J2 DCE Socket BlueMod+B20 Power Socket Jumper J6 DTE Socket SPI Interface Jumper J4 Jumper J7 Reset

4 Hardware

4.1 Bluetooth Modules

The BlueEva+B20 is populated with a BlueMod+B20 Bluetooth module.

4.2 Power Supply

There are two variants of supplying power to BlueEva+B20:

- +5VDC ±10% from external power supply connector.
- +5VDC ±10% from USB VBUS.

The power source can be selected by jumper J4.

The presence of the power supply voltage is indicated by the power LED.

4.3 Reset

The BlueEva+B20 is equipped with a reset button. Pressing the reset button will trigger the BlueMod+B20 module to perform a reset. The USB port is not influenced from the reset.

4.4 USB Interface

The BlueEva+B20 provides a USB interface which is used to connect the evaluation board to the host. The USB interface is equipped with a FTDI USB to serial bridge interfacing the serial port of the BlueMod+B20.

4.5 Serial Interface

The BlueEva+B20 provides a serial interface which is used to connect a communication device for transmitting data or a PC for controlling the BlueEva+B20. The serial interface corresponds to the V.24/RS-232 standard and supports the following features:

Transmission speed: 1,200–230,400 bps (asynchronous)

Character representation: 8 bit, even/odd/no parity, 1 or 2 stop bits

Hardware flow control with RTS/CTS

The BlueEva+B20 can be used in DTE or DCE mode. This requires a special setting in the firmware. The selection between the D-SUB socket (DCE) and the pins for the DTE interface is made by jumper J6.

4.6 SPI Interface

The BlueEva+B20 is equipped with a SPI interface for configuration, flashing firmware and debugging purposes. Please use the SPI cable delivered with your BlueEva+B20 to access the SPI interface.

BlueEva+B20/V4 User Guide

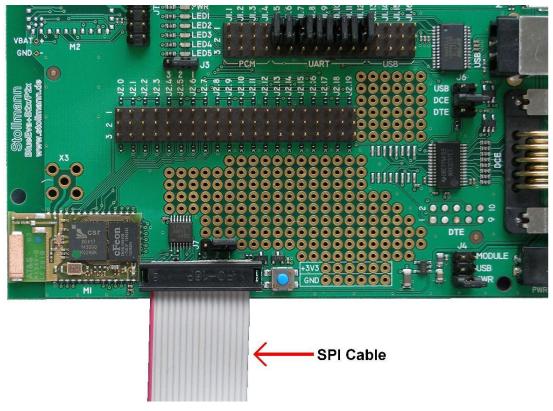


Figure 7: SPI interface cable

4.7 LEDs

The BlueEva+B20 provides several LEDs for functional indication or to use for free disposal.

Interface	Position	Function
	PWR	Indicates the presence of power supply voltage
	LED1	Attached to PIO2 via J1.16/2-3
LEDs	LED2	Attached to PIO7 via J1.4/2-3
LEDS	LED3	Attached to PIO8 via J1.3/2-3
	LED4	Attached to PIO9 via J1.2/2-3
	LED5	Attached to PIO10 via J1.1/2-3

4.8 Connectors/Jumpers

4.8.1 Jumper J1 – Signal Routing

Jumper J1 is used for signal routing.

Jumper Number	Function			
	Position 1-2	Position 2-3		
J1.1	GPIO10 - PCM_OUT	GPIO10 - LED5		
J1.2	GPIO9 - PCM_CLK	GPIO9 - LED4		
J1.3	GPIO8 - PCM_IN	GPIO8 - LED3		
J1.4	GPIO7 - PCM_SYNC	GPIO7 - LED2		
J1.5	GPIO6 - RI	GPIO6 - RI		
J1.6	GPIO5 - DSR output	GPIO14 - DSR output		
J1.7	GPIO4 - DTR input	GPIO13 - DTR input		
J1.8	GPIO3 - DCD	GPIO15 - DCD		
J1.9	Module RTS to V.28 level shifter	-		
J1.10	Module TXD to V.28 level shifter	-		
J1.11	Module RXD to V.28 level shifter	-		
J1.12	Module CTS to V.28 level shifter	-		
J1.13	-	-		
J1.14	-	-		
J1.15	USB_ON – GPIO3 (BlueMod+P25/G2)	USB_ON – GPIO4 (BlueMod+B20)		
J1.16	GPIO2 – USB Pull-up	GPIO - LED1		

4.8.2 Jumper J2 – GPIO Input

All pins 1 of jumper J2 are connected to +3V3 supply voltage with a resistor of 330Ω and all pins 3 of jumper J2 are connected to GND with a resistor of 330Ω . When using the GPIOs or AIOs as inputs, this arrangement allows to place jumpers in position 1-2 to generate a HIGH and to place jumpers in position 2-3 to generate a LOW input. When using the GPIOs or AIOs as outputs, pin 2 will be used to access the signal.

Jumper Number	Description
J2.0	GPIO0
J2.1	GPIO1
J2.2	GPIO2
J2.3	GPIO3
J2.4	GPIO4
J2.5	GPIO5
J2.6	GPIO6
J2.7	GPIO7
J2.8	GPIO8
J2.9	GPIO9
J2.10	GPIO10
J2.11	GPIO11
J2.12	GPIO12
J2.13	GPIO13
J2.14	GPIO14
J2.15	GPIO15
J2.16	GPIO16
J2.17	GPIO17
J2.18	AIO0
J2.19	AIO1

4.8.3 Jumper J3 – Power Consumption

Jumper J3 is reserved for module power consumption measurement to use for BlueMod+B20. Remove jumper from position 1-2 to take measurements.

4.8.4 Jumper J4 – Power Source

The power source can be selected by jumper J4.

Jumper	Position	Function
	Module	Reserved
J4	USB	The module is powered via the USB interface
	PWR	Power from power socket

The presence of the power supply voltage is indicated by the PWR LED.

4.8.5 Jumper J5 – Ground Connection

This jumper provides 3 pins with ground connection (0V) for measuring.

4.8.6 Jumper J6 – Module Serial Interface Activation

Jumper J6 is used to activate the different serial interfaces.

Jumper Position Function			
	USB	Activates the USB to serial bridge connected to USB	
J6	DCE	The V.28 level shifter and the interface on the DCE socket is activated.	
	DTE	Reserved	

4.8.7 Jumper J7 – Reset Button

Jumper J7 is used for module reset button. Remove jumper from position 1-2 to ignore reset button.

4.8.8 Connector X1

Connector X1 is an extension header, all module signals are accessible on this header.

Pin Number	Signal	Dir.	Description
1	+3V3	0	Supply Voltage Output
2	GND	-	Ground
3	Not used	-	Do not connect
4	AIO1	I/O	Analogue Input/Output
5	AIO0	I/O	Analogue Input/Output
6	RESET#	I/O	Reset Input/Output (active LOW)
7	PCM_OUT	0	PCM Data Output
8	PCM_CLK	I/O	PCM Clock (Slave = I, Master = O)
9	PCM_IN	I	PCM Data Input
10	PCM_SYNC	I/O	PCM Frame Sync (Slave = I, Master = O)
11	Not used	-	Do not connect
12	Not used	-	Do not connect
13	Not used	-	Do not connect
14	Not used	-	Do not connect
15	GPIO11	I/O	Digital Input/Output
16	GPIO10	I/O	Digital Input/Output
17	GPIO9	I/O	Digital Input/Output
18	GPIO8	I/O	Digital Input/Output
19	GPIO7	I/O	Digital Input/Output
20	GPIO6	I/O	Digital Input/Output
21	GPIO5	I/O	Digital Input/Output
22	GPIO4	I/O	Digital Input/Output
23	GPIO3	I/O	Digital Input/Output
24	GPIO2	I/O	Digital Input/Output
25	GPIO1	I/O	Digital Input/Output
26	GPIO0	I/O	Digital Input/Output
27	UART_RTS	0	Request To Send
28	UART_TX	0	UART Transmit Data
29	UART_RX	I	UART Receive Data
30	UART_CTS	I	UART Clear To Send
31	+3V3	0	Supply Voltage Output
32	GND	-	Ground

4.8.9 Debug Interface

This interface is reserved for later usage.

4.8.10 Module Interface

This interface is reserved for later usage.

4.9 Default Configuration

The BlueEva+B20 is preconfigured to DCE mode, using serial control lines and external power supply. The jumpers are configured as described below:

Jumper Number	Position	Function	
J1.5	1-2	Module RI	
J1.6	1-2	Module DSR	
J1.7	1-2	Module DTR	
J1.8	1-2	Module DCD	
J1.9	1-2	Module RTS	
J1.10	1-2	Module TXD	
J1.11	1-2	Module RXD	
J1.12	1-2	Module CTS	
J3	1-2	Module power consumption	
J4	PWR	Power from power socket	
J6	DCE	UART interface from DCE interface	
J7	1-2	Reset button	

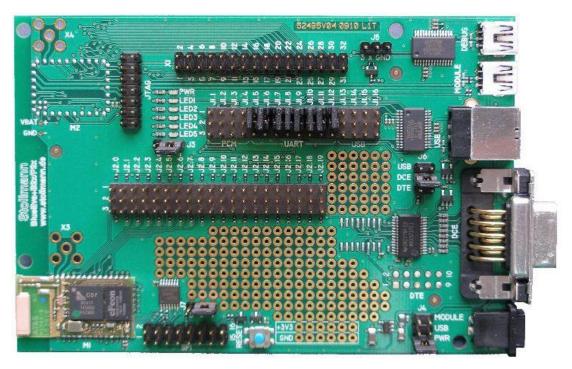


Figure 8: BlueEva+B20 default configuration

5 Software

The BlueEva+B20 uses CSR-based serial Bluetooth modules with CSR HCl software and Stollmann profiles. The supported profile is Serial Port Profile (SPP).

The BlueEva+B20 is controlled by AT commands. For a detailed description about the AT commands please refer to the appropriate *BlueMod+B2x AT Command Reference*.

For upgrading the firmware of the BlueEva+B20 please refer to the application note *B0801 B20 Firmware Upgrade*.

6 **Restrictions**

This version does not support DTE mode.

7 History

Version	Release Date	Ву	Change description
r01	15.07.2011	MB	First release
r02	25.05.2016	BG	Telit cover page added

BlueEva+B20/V4 User Guide

Telit Wireless Solutions GmbH Mendelssohnstraße 15 D 22761 Hamburg Germany Phone:+49 (0)40 890 88-0 Fax: +49 (0)40 890 88-444 E-mail:ts-srd@telit.com www.telit.com

SUPPORT INQUIRIES

Link to **www.telit.com** and contact our technical support team for any questions related to technical issues.

www.telit.com

Telit Communications S.p.A. Via Stazione di Prosecco, 5/B I-34010 Sgonico (Trieste), Italy

Telit IoT Platforms LLC 5300 Broken Sound Blvd, Suite 150 Boca Raton, FL 33487, USA Telit Wireless Solutions Inc. 3131 RDU Center Drive, Suite 135 Morrisville, NC 27560, USA

Telit Wireless Solutions Co., Ltd. 8th Fl., Shinyoung Securities Bld. 6, Gukjegeumyung-ro8-gil, Yeongdeungpo-gu Seoul, 150-884, Korea

Telit Wireless Solutions Ltd. 10 Habarzel St. Tel Aviv 69710, Israel

Telit Wireless Solutions Technologia e Servicos Ltda Avenida Paulista, 1776, Room 10.C 01310-921 São Paulo, Brazil

Telit reserves all rights to this document and the information contained herein. Products, names, logos and designs described herein may in whole or in part be subject to intellectual property rights. The information contained herein is provided "as is". No warranty of any kind, either express or implied, is made in relation to the accuracy, reliability, fitness for a particular purpose or content of this document. This document may be revised by Telit at any time. For most recent documents, please visit www.telit.com

Copyright © 2016, Telit